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Abstract Intuitively it seems that the coherence of information received from
heterogeneous sources should be one factor in determining the reliability or truthfulness
of the information, yet the concept of coherence is extremely difficult to define. This paper
draws on recent work on probabilistic measures of coherence by investigating two measures
with contrasting properties and then explores how this work relates to similarity of fuzzy sets
and comparison of knowledge bases in cases where inconsistency is present. In each area
contrasting measures are proposed analogous to the probabilistic case. In particular, concepts
of fuzzy and logical independence are proposed and in each area it is found that sensitivity
to the relevant concept of independence is a distinguishing feature between the contrasting
measures. In the case of inconsistent knowledge bases, it is argued that it is important to
take agreeing information and not just conflicting and total information into account when
comparing two knowledge bases. One of the measures proposed achieves this and is shown
to have a number of properties which enable it to overcome some problems encountered by
other approaches.

Keywords Agreement · Coherence · Fuzzy similarity · Inconsistency · Independence ·
Probability

1 Introduction

In situations where information is available from different sources it can be useful to know
how coherent the information is. For example, we might be more inclined to accept the
testimony of a witness if her story coheres with that of other witnesses or with information
obtained in other ways. But what exactly is coherence? One point to note is that it is not the
same as consistency since coherence seems to involve some degree of agreement or support
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228 D. H. Glass

among the pieces of information in question. While this much can be granted, no generally
accepted definition of coherence has been forthcoming.

Nevertheless, in recent years considerable attention has been given to characterising coher-
ence in probabilistic terms (see, for example, Shogenji 1999; Olsson 2002; Bovens and
Hartmann 2003; Fitelson 2003). The main focus of such work has been on obtaining a
suitable measure of coherence and on determining whether a greater degree of coherence
implies a higher probability of the information being true. Detailed discussions on these
matters as well as discussions relating coherence to such topics as reliability, confirmation,
testimony and theory choice in science have been explored in some detail by Bovens and
Hartmann (2003) and Olsson (2005). Here the focus is different since the goal of the paper is
to investigate the application of the concept of coherence in other areas, rather than address-
ing questions about the fundamental nature of coherence. To achieve this, we present a brief
description of probabilistic measures of coherence by considering two particular measures
and some significant differences between them, before going on to investigate how coherence
might be related to similarity in fuzzy sets and inconsistency in knowledge bases.

As in the case of probabilistic coherence, two contrasting accounts of fuzzy similarity are
provided. The first of these gives an account of similarity that does not take the degree of
fuzziness into account. While many similarity measures have been proposed in the litera-
ture (see, for example, Chen et al. 1995; Wang et al. 1995; and references therein) most fall
into this category since they satisfy the condition that the similarity of any fuzzy set with
itself should be one. However, not all similarity measures satisfy this condition and indeed
Sancho-Royo and Verdegay (2000, 2005) have proposed what they call a coherence measure
to incorporate both similarity (which they take to satisfy the condition noted) and fuzziness.
In this paper, we provide necessary conditions for a second type of similarity measure that
does take the degree of fuzziness into account. Properties of the two concepts of similarity,
analogous to the two concepts of probabilistic coherence, are explored and it is shown how
measures of the second type can be generated from measures of the first type. It turns out
that the second type of similarity measure is closely related to Sancho-Royo and Verdegay’s
concept of coherence.

The next part of the paper applies the concept of coherence to knowledge bases, with the
main focus being on cases where two knowledge bases are in conflict with each other. Consid-
erable attention has been given to dealing with inconsistency (see, for example, Gärdenfors
1988; Benferhat et al. 1997; Hunter 2000; Priest 2002) and there has also been work pro-
posing measures of information and inconsistency for knowledge bases (Lozinskii 1994;
Knight 2001, 2003), which in some cases are used to order sources of information (Hunter
2002; Konieczny et al. 2003). Suppose information is received from various sources and that
in each case there is some inconsistency with domain knowledge. In such cases it may be
appropriate to use a measure of inconsistency to obtain an ordering of the sources, with the
source that is least inconsistent with the domain knowledge considered the most reliable.
However, in many cases it is not only the degree of inconsistency that is relevant, but also the
amount of information provided by the source. If any source provides a sufficient amount of
useful information this may be enough to compensate for its inconsistency, thus a trade-off
is required. See Hunter and Konieczny (2004) for discussion on this point.

However, a further consideration suggests that in some cases information in agreement
between two knowledge bases, in addition to information in conflict and the total information,
may be important. Suppose we wish to order information from various sources Ki in terms of
their relationship with another knowledge base K . One approach is to consider the union of
information from each source with K , obtaining Ki ∪K , and to calculate the quantity of infor-
mation and inconsistency in Ki ∪ K . Consider a simple case where K = {p, q}, K1 = {¬p}
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and K2 = {¬p, q}. The problem here is that in taking the union this approach fails to
distinguish between K1 and K2. Suppose, for example, we are considering multiple witness
reports. Although we might expect there to be some degree of conflict between any two
reports, it may be that a high degree of coherence between any pair of reports will be crucial
in accepting their authenticity. As pointed out by Qi et al. (2005), the notion of agreement is
also relevant in terms of interactions between agents since agreement could offset conflict
between them. The general aim of this paper is to propose a measure of coherence which
incorporates agreement, inconsistency and information of two knowledge bases.

The work of Qi et al. is highly relevant to the current paper since they discuss two types of
agreement, weak and strong, with the former corresponding to information provided by one
source and not the other, while the latter corresponds to information provided by both sources.
These concepts are then used to define a degree of conflict, a degree of strong agreement and
a degree of weak agreement. Although their work focussed on prioritised knowledge bases,
it is still relevant for the non-prioritised case. Their work will be discussed further in Sect. 4,
including possible improvements that result from using a single measure of coherence.

The structure of the paper is as follows. Section 2 introduces the concept of coherence in a
probabilistic context and presents a discussion of the contrasting properties of two different
coherence measures. Section 3 focuses on the similarity of fuzzy sets and provides a discus-
sion of two different conceptions of fuzzy sets that parallels the discussion of probabilistic
coherence measures. Section 4, considers how the concept of coherence might be relevant to
comparing knowledge bases. First, we look at two coherence measures of a pair of knowledge
bases, which are individually consistent as well as being consistent with each other. Once
again, this discussion parallels the probabilistic case. It also provides a foundation for dealing
with the more interesting problem of two knowledge bases which are inconsistent with each
other. Finally, Sect. 5 presents some conclusions.

2 Probabilistic measures of coherence

Although there is no agreed definition of coherence for a set of beliefs, there is agreement
about some of the features such a measure should possess. Here the focus is on the case of
two beliefs1 since there is no agreement even in this case and since this problem will be the
most relevant for relating coherence to other areas in the remaining sections of this paper.
The following three points are widely, although not universally (see, for example, Shogenji
1999), accepted as necessary conditions for the coherence of two beliefs A and B, denoted
C(A, B),

1. C(A, B) = C(B, A),
2. C(A, B) is maximal if A and B are logically equivalent, and
3. C(A, B) is minimal if A and B are logically inconsistent.

A simple measure, C1, for the coherence of two beliefs satisfying these conditions has
been discussed by Olsson (2002) and Glass (2002) and is defined as follows,

C1(A, B) = P(A ∧ B)

P(A ∨ B)
, (1)

1 A problem for probabilistic measures of coherence concerns how the beliefs should be individuated. The
problem is that the degree of coherence of a belief set depends on how the beliefs have been individuated so
that, for example, the coherence of three beliefs A, B and C is not in general the same as the coherence of the
beliefs A∧ B and C . Shogenji (2001) has argued that beliefs should be individuated by their sources, although
this has been criticised by Moretti and Akiba (2007).
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230 D. H. Glass

whenever P(A ∨ B) �= 0, where P is a probability distribution.

Example 1 Suppose an unbiased die is rolled and consider the belief, A, that the result will
be even and the belief, B, that the result will be greater than three. The coherence of A and
B according to C1 is 1/2.

In addition to satisfying the three criteria noted above C1 also possesses the following prop-
erties.

Proposition 1 For probability distributions P and P ′,

(a) if P(A|B) > P ′(A|B) and P(B|A) > P ′(B|A), then A and B are more coherent
according to C1 on distribution P than on distribution P ′ (Bovens and Olsson 2000);

(b) if P(A|B) = P ′(A|B) and P(B|A) = P ′(B|A), then A and B are equally coherent
according to C1 on distribution P and distribution P ′.

Proof Trivial if P(A ∧ B). Otherwise, dividing numerator and denominator by P ′
(A ∧ B) = 0 and using Bayes’ theorem we note that C1 can be written as

C1(A, B) = P(A ∧ B)

P(A) + P(B) − P(A ∧ B)

=
[ 1

P(A|B)
+ 1

P(B|A)
− 1

]−1
. (2)

(a) if P(A|B) > P ′(A|B) and P(B|A) > P ′(B|A), it follows that 1/P(A|B)+1/P(B|A)−
1 < 1/P ′(A|B) + 1/P ′(B|A) − 1 and so C1(A, B) is greater for distribution P than it
is for P ′.

(b) The proof follows directly from Eq. 2.
��

Proposition 1 captures the idea that it is the conditional probability of each belief given
the other that is important. The important factor for the C1 measure is the degree of overlap
between the beliefs rather than how probable they are in the first place, i.e. if the relevant
conditional probabilities are the same for the distributions P and P ′ the coherence accord-
ing to C1 will be the same irrespective of the marginal probabilities of A and B. Although
Proposition 1 seems quite plausible, it is not generally considered to be a necessary require-
ment for a coherence measure. In fact, even Bovens and Olsson (2000) who propose part
(a) of the proposition draw attention to some problems with it (see also Shogenji 1999).
Presently we shall consider another measure of coherence proposed in the literature which
does not satisfy Proposition 1. First, we consider another property of C1.

Proposition 2 For any belief C, C1(A ∨ C, B ∨ C) ≥ C1(A, B).

Proof We note that in going from C1(A, B) to C1(A ∨C, B ∨C) the numerator is increased
more than the denominator as the following expression shows,

C1(A ∨C, B ∨C)= P(A ∧ B)+P(C∧¬A ∧ ¬B) + P(C ∧ A ∧ ¬B) + P(C ∧ ¬A ∧ B)

P(A ∨ B) + P(C ∧ ¬A ∧ ¬B)
.

(3)
From this expression the proof follows immediately. ��
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Coherence measures and their relation to fuzzy similarity and inconsistency 231

Proposition 2 is analogous to a property shared by many measures of the similarity of two
fuzzy sets as will be discussed further in Sect. 4.

Relating coherence to the notion of support Fitelson (2003) defines a measure of coherence
in terms of the following measure of support (which is based on Kemeny and Oppenheim
1952).

Definition 1 (Kemeny and Oppenheim 1952; Fitelson 2003) A measure of support, F , which
B gives to A can be defined as

F(A, B) = P(B|A) − P(B|¬A)

P(B|A) + P(B|¬A)
,

if A is contingent and B is not a necessary falsehood. F(A, B) is defined to be 1 if A and B
are necessary truths, 0 if A is a necessary truth and B is contingent, and −1 if B is a necessary
falsehood.

This measure of support is then used to define a coherence measure which, in the case of
two beliefs A and B, is given by

C2(A, B) = 1

2
{F(A, B) + F(B, A)}. (4)

The C2 measure satisfies the three requirements noted earlier for a coherence measure and
thus has much in common with C1 even though C2 is defined on the interval [−1, 1] rather
than [0, 1]. Nevertheless, there are also some very significant differences between C1 and
C2. In particular, Fitelson’s measure, C2, is constructed to be sensitive to probabilistic depen-
dence so that C2(A, B) > 0 if A and B have a positive probabilistic dependence on each
other (i.e. P(A|B) > P(A|¬B)), C2(A, B) < 0 if A and B have a negative probabilistic
dependence, and C2(A, B) = 0 if A and B are probabilistically independent. Thus, zero
provides a neutral point distinguishing positive and negative dependence. A consequence of
taking account of probabilistic dependence in this way is that neither Proposition 1 (see Glass
2005) nor Proposition 2 hold for the C2 measure. The following proposition emphasizes this
difference between the two measures by pointing out the insensitivity of C1 to probabilistic
dependence.

Proposition 3 The C1 coherence measure defined in Eq. 1 is insensitive to the probabilistic
dependence in the sense that ∀ε ∈ (0, 1)

(a) there are beliefs A and B that have a negative probabilistic dependence and C1(A, B) >

1 − ε,
(b) there are beliefs A and B that have a positive probabilistic dependence and C1(A, B) <

ε.

Proof

(a) Let A represent the belief that a number, randomly selected from the interval [0, 1] will
be in the interval [0, r ], where 1/2 < r < 1. Similarly, let B represent the belief that
it will be in the interval [1 − r, 1]. We note that A and B are negatively dependent
since P(A|B) = (2r − 1)/r < P(A|¬B) = 1. Now, let r = 1 − ε/4. We find that
C1(A, B) = 1 − ε/2 > 1 − ε.

(b) Again we consider a number selected randomly from the interval [0, 1], but we now take
A to be the belief that it will be in the interval [0, 1/r ], where r > 2, and B the belief
that it will be in the interval [0, 1/2]. We note that A and B are positively dependent
since P(A|B) = 2/r > P(A|¬B) = 0. Now, select a value of r such that r > 2/ε. We
find that C1(A, B) = 2/r < ε. ��
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Clearly, the C2 measure does not satisfy a corresponding version (taking into account its
different range) of Proposition 3. Thus, Propositions 1, 2 and 3 provide ways of distinguish-
ing C1 and C2 and, more generally, ways of distinguishing very different conceptions of
coherence.

3 Similarity of fuzzy sets

This section investigates the relationship between the probabilistic measures of coherence as
discussed in Sect. 2 and similarity measures for fuzzy sets. In what follows we shall consider
a finite universe of discourse, X , and a fuzzy set, A, defined on X , represented by the set
of pairs {(x, µA(x)), x ∈ X}. The complement of a fuzzy set A, denoted A, is defined by
{(x, 1−µA(x)), x ∈ X}. We also define I to be the fuzzy set such that µI (x) = 0.5∀x ∈ X .
For a detailed account of fuzzy set theory we refer the reader to Dubois and Prade (1980).

3.1 Two conceptions of fuzzy similarity

Considering two fuzzy sets A and B, the following points provide necessary conditions for
a measure S to be a similarity measure.

1. S(A, B) = S(B, A),
2. S(A, B) is maximal if A and B are identical crisp sets, and
3. S(A, B) is minimal if A and B are crisp and A = B.

While these conditions are reasonable as far as they go, more precise formulations can be
given to distinguish particular types of similarity measures. For example, as the comparison
of Chen et al. (1995) illustrates, a number of measures satisfy conditions which we shall use
to define a type one similarity measure.

Definition 2 A similarity measure is said to be a type one similarity measure iff:

1. S(A, B) = S(B, A),
2′. S(A, B) is maximal iff A and B are identical, and
3′. S(A, B) is minimal iff |A ∩ B| = 0.

A commonly used type one similarity measure is given by

S1(A, B) = |A ∩ B|
|A ∪ B| , (5)

provided |A ∪ B| �= 0. In the case where |A ∪ B| = 0 (i.e. A = B = ∅) we define
S1(A, B) = 1. Clearly, S1 corresponds with the C1 coherence measure and shares some of
its properties. For example, the following proposition corresponds with Proposition 2.

Proposition 4 For any fuzzy set C, S1(A ∪ C, B ∪ C) ≥ S1(A, B).

Proof See the proof of Proposition 2.1 in Wang et al. (1995).

It should be noted, however, that not all type one similarity measures satisfy this propo-
sition.

By way of contrast to type one similarity measures, we now consider a second way of
making conditions 1, 2 and 3 more precise by defining a type two similarity measure.
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Coherence measures and their relation to fuzzy similarity and inconsistency 233

Definition 3 A similarity measure is said to be a type two similarity measure iff:

1. S(A, B) = S(B, A),
2′′. S(A, B) is maximal iff A and B are identical crisp sets, and
3′′. S(A, B) is minimal iff A and B are crisp and A = B.

Note that 2′′ and 3′′ provide necessary and sufficient conditions for maximality and mini-
mality respectively and so differ from conditions 2 and 3 presented earlier, which were only
sufficient conditions. While type two measures are not at all common in the literature, they
enable the degree of fuzziness to be taken into account and provide a link with the probabi-
listic measures of coherence. An example of a type two measure, which provides a contrast
to the S1 measure, has been defined by Dubois and Prade (1980) and can be expressed as
follows,

S2(A, B) = 1 −
∑

x max[min(µA(x), 1 − µB(x)), min(1 − µA(x), µB(x))]
|X | . (6)

Unlike S1, S2 does not satisfy Proposition 4 as illustrated by the following example.

Example 2 Let A = (0.4, 0.3), B = (0.3, 0.1) and C = (0.5, 0.4) be three fuzzy sets.
S2(A ∪C, B ∪C) = 0.55 < 0.65 = S2(A, B). By contrast S1(A ∪C, B ∪C) = 1 > 0.57 =
S1(A, B).

This suggests an analogy between the similarity measures S1 and S2 and the coherence
measures C1 and C2 respectively, which can be made stronger by considering the notion of
weak equality as discussed by Dubois and Prade. Two fuzzy sets A and B are said to be in
weak equality if µA(x) and µB(x) are both greater than or equal to 1/2 or both less than or
equal to 1/2 for all x . It turns out that S2(A, B) ≥ 1/2 if and only if A and B are in weak
equality, while no such dependence exists in the case of the S1 measure. Thus, the notion of
weak equality plays a similar role for the S2 measure as probabilistic dependence does for
the C2 measure. We also note that for any fuzzy set A, S2(A, I ) = S2(I, I ) = 1/2, where
I = {(x, 1/2), x ∈ X}. Thus, S2 takes fuzziness into account since the similarity of a set
with itself depends on the fuzziness of the set.

This point also provides a key difference between type one and type two measures more
generally. Type one measures do not depend on the degree of fuzziness of the sets in the
sense that the similarity of a set with itself is one irrespective of its degree of fuzziness.
By contrast type two measures are able to take the degree of fuzziness into account. As the
following proposition shows, any type one similarity measure can be used to construct a
type two similarity measure, which is analogous in some respects to the C2 probabilistic
coherence measure.

Proposition 5 For any type one similarity measure, S, with range [0, 1], define a new
measure Snew with range [−1, 1] as follows,

Snew(A, B) = 1

2

[(
S(A, B) + S(A, B)

)
−

(
S(A, B) + S(A, B)

)]
. (7)

Snew satisfies the following properties:

(a) Snew is a type two similarity measure,
(b) For any fuzzy set A, Snew(A, I ) = 0,
(c) It is not necessarily the case that for a fuzzy set C, Snew(A ∪ C, B ∪ C) ≥ Snew(A, B).
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Proof (a) Snew is a type two similarity measure
(i) Snew(A, B) = Snew(B, A). This follows from the fact that S is symmetric and the

definition of Snew.
(ii) Snew(A, B) is maximal (=1) iff A and B are identical crisp sets.

Sufficiency. Suppose A and B are identical crisp sets. It follows from the fact that S
satisfies condition 2′ that S(A, B) = S(A, B) = 1. Since S also satisfies condition
3′ it follows that S(A, B) = S(A, B) = 0, and so Snew(A, B) = 1.
Necessity. If Snew(A, B) = 1, then S(A, B) = S(A, B) = 0. From the fact that S
satisfies condition 3′, it follows that ∀x ∈ X min(µA(x), 1 − µB(x)) = min(1 −
µA(x), µB(x)) = 0 and so ∀x either µA(x) = µB(x) = 0 or µA(x) = µB(x) = 1
and so A and B are identical crisp sets.

(iii) Snew(A, B) is minimal (=−1) iff A and B are crisp and A = B.
Sufficiency. Suppose A and B are crisp sets and A = B. It follows from the fact
that S satisfies condition 3′ that S(A, B) = S(A, B) = 0. Since S also satisfies
condition 2′ it follows that S(A, B) = S(A, B) = 1, and so Snew(A, B) = −1.
Necessity. If Snew(A, B) = −1, then S(A, B) = S(A, B) = 0 and S(A, B) =
S(A, B) = 1. Since S satisfies condition 2′ it follows that A = B and so ∀x ∈
X µA(x) = 1 − µB(x). Furthermore, since S satisfies condition 3′, it follows
that |A ∩ B| = 0 and so ∀x ∈ X min(µA(x), µB(x)) = 0. Hence, ∀x either
µA(x) = 0 and µB(x) = 1 or µB(x) = 0 and µA(x) = 1 and so A and B are crisp
sets.

(b) Since I = {(x, 1/2), x ∈ X}, I = I . Thus, S(A, I ) = S(A, I ) and S(A, I ) = S(A, I ),
and so Snew(A, I ) = 0.

(c) Suppose Snew is obtained from the S1 measure via Eq. 7 and let A, B and C be the sets
defined in Example 1. We obtain Snew(A, B) = 0.32 > 0.18 = Snew(A ∪ C, B ∪ C). ��

The analogous nature of the relationship between a measure Snew as defined in Eq. 7 and
the C2 measure can be seen by comparing Proposition 5(c) with the fact that C2 does not
satisfy Proposition 2. Furthermore, Snew has been constructed in such a way that the neutral
point where Snew = 0 becomes more significant as it is in the case of C2. To bring this out
more clearly, the terms in Eq. 7 can be used to define the fuzzy-(in)dependence of two fuzzy
sets as follows,

Definition 4 For any similarity measure, S, and for two fuzzy sets A and B we say that

(i) A and B are positively fuzzy-dependent iff S(A, B)+ S(A, B) > S(A, B)+ S(A, B),
(ii) A and B are fuzzy-independent iff S(A, B) + S(A, B) = S(A, B) + S(A, B),

(iii) A and B are negatively fuzzy-dependent iff S(A, B)+ S(A, B) < S(A, B)+ S(A, B).

It should be noted that this definition of (in)dependence is relative to the similarity measure,
S, under consideration. By using this definition, we now have the following proposition
which corresponds to Proposition 3.

Proposition 6 Any type one similarity measure, S, is insensitive to fuzzy-dependence between
sets as defined in Definition 4 in the sense that

(a) there are sets A and B which are fuzzy-independent and S(A, B) = 0 (i.e. has its
minimum value),

(b) there are sets A and B which are fuzzy-independent and S(A, B) = 1.
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Proof

(a) Consider the fuzzy sets A = ∅ and B = I . By condition 3′ and the fact that B = B, we
know that S(A, B) = S(A, B) = 0 and that S(A, B) = S(A, B) and so A and B are
fuzzy-independent for measure S.

(b) Consider the fuzzy sets A = B = I . By condition 2′ we know that S(A, B) = 1, yet A
and B are fuzzy-independent for measure S. ��

For the S1 similarity measure defined in Eq. 5, the following proposition more directly
parallels Proposition 3,

Proposition 7 The S1 similarity measure defined in Eq. 5 is insensitive to fuzzy-dependence
between sets as defined in Definition 4 in the sense that ∀ε ∈ (0, 1)

(a) there are sets A and B which have a negative fuzzy-dependence and S1(A, B) > 1 − ε,
(b) there are sets A and B which have a positive fuzzy-dependence and S1(A, B) < ε.

Proof

(a) Consider the fuzzy sets A = ( 1
2 − ε

4 ) and B = ( 1
2 + ε

4 ). Since S1(A, B) = S1(A, B) < 1
and S1(A, B) = S1(A, B) = 1, A and B are negatively fuzzy-dependent. Furthermore,
S1(A, B) = ( 1

2 − ε
4 )/( 1

2 + ε
4 ) = 1 − 2ε

2+ε
> 1 − ε.

(b) Consider the fuzzy sets A = { ε
4 } and B = { 1

2 − ε
4 }. Since S1(A, B) = ε

2−ε
> ε

2+ε
=

S1(A, B) and S1(A, B) = 2+ε
4−ε

> 2−ε
4−ε

= S1(A, B), A and B are positively fuzzy-depen-
dent. Furthermore, S1(A, B) = ε

2−ε
< ε. ��

3.2 Discussion of related work

It is clear from the foregoing discussion that a key difference between type one similarity
measures and type two similarity measures is that the latter can take the degree of fuzziness
into account while the former cannot. For example, for measures constructed using Eq. 7
similarity is maximal for identical crisp sets, but non-maximal for identical non-crisp sets,
e.g. Snew(I, I ) = 0, where I = {(x, 1/2), x ∈ X}. It is interesting to note that Sancho-Royo
and Verdegay (2000, 2005) propose a type of measure to take into account both similarity and
degree of fuzziness, which they call a coherence measure. Their definition of a coherence
measure can be stated as follows,

Definition 5 Let A and B be finite fuzzy sets. A function Cohe such that Cohe(A, B) lies
in the interval [0, 1] is a coherence measure iff:

(i) Cohe(A, B) = Cohe(B, A),
(ii) Cohe(A, B) = 1 − Cohe(A, B),

(iii) Cohe(∅, X) = 0, where X is the crisp set such that µX (x) = 1 ∀x ∈ X .

The following proposition establishes the relationship between this definition of a coher-
ence measure and the foregoing discussion of similarity measures.

Proposition 8 For any type one similarity measure, S, consider the type two similarity mea-
sure Snew defined in Eq. 7. This similarity measure can be used to generate a coherence
measure as follows,

Cohe(A, B) = 1

2
(Snew(A, B) + 1). (8)
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Proof

(i) Cohe(A, B) = Cohe(B, A).
Follows from the fact that S is symmetric.

(ii) Cohe(A, B) = 1 − Cohe(A, B).

Cohe(A, B)= 1
4

[(
S(A, B)+ S(A, B)

)
−

(
S(A, B)+ S(A, B)

)]
+ 1

2=− 1
2 Snew(A, B)

+ 1
2=1−Cohe(A, B).

(iii) Cohe(∅, X) = 0.

Cohe(∅, X) = 1
4

[(
S(∅, X) + S(X,∅)

)
−

(
S(X, X) + S(∅,∅)

)]
+ 1

2 . By condition

3′ S(∅, X) = S(X,∅) = 0 and by condition 2′ S(X, X) = S(∅,∅) = 1. It follows that
Cohe(∅, X) = 0. ��

Note that Eq. 8 merely transforms Snew so that it lies in the interval [0, 1] and so, in
effect, Proposition 8 says that Snew is a coherence measure. The converse result does not
hold, however, i.e. a coherence measure does not necessarily satisfy the propositions noted
under Proposition 5 (even if it is transformed so that, like Snew it lies in the interval [−1, 1]).
Nevertheless, it is clear that, like Snew, coherence measures have a neutral point such that
for any fuzzy set A, Cohe(A, I ) = 0.5.2 Furthermore, it seems like a sensible extension of
the idea behind coherence that coherence measures (in Sancho-Royo and Verdegay’s sense)
should satisfy Proposition 5(a) (i.e. should be type two similarity measures), even though this
does not follow from their definition of coherence. This can be seen from the fact that mea-
sures defined in their paper, such as those based on distance metrics, are type two similarity
measures.

The fact that the S2 similarity measure as defined in Eq. 6 and similarity measures con-
structed using Eq. 7 share similar properties can now be expressed more formally by noting
that S2, in addition to being a type two similarity measure, is also a coherence measure as
the following proposition asserts.

Proposition 9 The S2 similarity measure is a coherence measure.

Proof

(i) S2(A, B) = S2(B, A). Follows immediately from the definition.
(ii) S2(A, B) = 1 − S2(A, B).

We write S2(A, B) = 1 − ∑
x vx/|X | and S2(A, B) = 1 − ∑

x wx/|X | where
vx=max[min(µA(x), µB(x)), min(1−µA(x), 1−µB(x))] andwx=max[min(µA(x),

1−µB(x)), min(1−µA(x), µB(x))].
For a given x ∈ X we can assume without loss of generality that

µA(x) ≤ µB(x). (9)

From this it clearly follows that 1 − µB(x) ≤ 1 − µA(x). Clearly, either µA(x) ≥
1 − µB(x) or µA(x) < 1 − µB(x). We consider each case in turn.
Case 1 µA(x) ≥ 1 − µB(x) In this case vx = µA(x). Now consider the correspond-
ing term, wx in the expression for S2(A, B). We know from the assumption in this
case that µA(x) ≥ 1 − µB(x) and so µB(x) ≥ 1 − µA(x). From this it follows that
wx = max(1 − µB(x), 1 − µA(x)) and so it follows from Eq. 9 that wx = 1 − vx .

2 This follows from the fact that Cohe(A, I ) = Cohe(A, I ) and so from part (ii) of Definition 5 Cohe(A, I ) =
1 − Cohe(A, I ).
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Case 2 µA(x) < 1 − µB(x) In this case vx = 1 − µB(x). Now consider the cor-
responding term, wx in the expression for S2(A, B). We know from the assumption
in this case that µA(x) < 1 − µB(x) and so µB(x) < 1 − µA(x). From this it fol-
lows that wx = max(µA(x), µB(x)) and so it follows from Eq. 9 that wx = 1 − vx .
Thus, ∀x ∈ X , we know that wx = 1 − vx and so

S2(A, B) = 1 −
∑

x vx

|X | = 1 −
∑

x (1 − wx )

|X | =
∑

x wx

|X | = 1 − S2(A, B). (10)

(iii) Cohe(∅, X) = 0. Follows immediately from the definition. ��
This section has drawn attention to two very different types of similarity measures, which

are analogous to the two types of coherence measures discussed in Sect. 2. One type is domi-
nant in the literature and essentially ignores the degree of fuzziness of the sets. The other type
incorporates fuzziness and corresponds very closely to the coherence measures proposed by
Sancho-Royo and Verdegay. In particular, type two measures that have been constructed from
type one measures via Eq. 7 can be converted into coherence measures via Eq. 8. Furthermore,
the S2 measure, which is a type two measure, is also a coherence measure.

4 Coherence of two knowledge bases

We now consider how the concept of coherence might be applied to knowledge bases. Rather
than focussing on individual knowledge bases (possibly consisting of the union of two knowl-
edge bases) to determine their properties and then using this information to order them in
some way, the goal is to obtain a coherence measure to describe the relationship between two
knowledge bases, including agreement between them. This coherence measure can then be
used to order the knowledge bases. Throughout this section the knowledge bases are assumed
to be individually consistent. In Sect. 4.1 we additionally assume that they are consistent with
each other, while we do not make this assumption in Sect. 4.2.

In this section we use classical logic and consider a finite propositional language formed
from a set of atoms, i.e. propositional symbols. We represent an interpretation of the language
ω by the set of literals true in the interpretation, where a literal is either a propositional symbol
p or its negation ¬p. Suppose K is a knowledge base consisting of a set of propositional
formulae. Following Hunter (2004), we let I (K ) be the set of interpretations of K delineated
by Atoms(K ), the atoms used in K , and let M(K , L) be the set of models of K that are
in I (L). Thus, M(K , L) = {ω �

∧
K |ω ∈ I (L)}, where � is classical and

∧
K is the

conjunction of the formulae in K .

4.1 Consistent knowledge bases

To start with we consider the case where knowledge bases K1 and K2 contain consistent
information, i.e. K1 ∪ K2 is consistent. Although this might seem trivial since in general we
expect there to be some conflict between the two knowledge bases, this problem is important
for three reasons. First, even in cases where information from different sources is consistent
we still wish to rank pairs of sources in terms of the extent to which they agree with each
other and it is not obvious how this should be done. Second, dealing with this case will prove
instructive for tackling the more difficult problem where we wish to differentiate between
cases of inconsistency. Third, as we shall see, the measures proposed here are precise parallels
of those used in the probabilistic case discussed in Sect. 2 and so bring out the connection
between the different areas where the concept of coherence can be applied.
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Analogous to the necessary conditions for a probabilistic measure of coherence, the
following conditions can be proposed as necessary conditions for a coherence measure for
two individually consistent knowledge bases K1 and K2, denoted C(K1, K2).

1. C(K1, K2) = C(K2, K1),
2. C(K1, K2) is maximal if K1 and K2 are logically equivalent, and
3. C(K1, K2) is minimal if K1 and K2 are logically inconsistent.

Note that inconsistency is treated trivially according to these conditions since inconsis-
tency always gives rise to a minimal value of coherence. Analogous to the probabilistic
measure C1, we define a coherence measure CK B1 for the coherence of two knowledge bases
K1 and K2 in terms of the relative overlap between their models,

CK B1(K1, K2) = |M(K1, K1 ∪ K2) ∩ M(K2, K1 ∪ K2)|
|M(K1, K1 ∪ K2) ∪ M(K2, K1 ∪ K2)| , (11)

where we note that M(K1, K1 ∪ K2) is the set of classical models of K1 that are in the set of
interpretations arising from the atoms contained in K1∪K2 and similarly for M(K2, K1∪K2).

Example 3 CK B1({p}, {p, q}) = 1/2, CK B1({p}, {p ∨ q}) = 2/3, CK B1({p}, {q}) = 1/3
and CK B1({¬p}, {p, q}) = 0.

In order to obtain a measure analogous to the probabilistic measure C2 we first state
Hunter’s (2004) definition of degree of entailment (changing only the notation).

Definition 6 (Hunter 2004) Let X and Y be sets of classical propositional formulae each of
which is consistent (i.e. X � ⊥ and Y � ⊥). The degree of entailment of X for Y , denoted
E(Y |X), is defined as follows,

E(Y |X) = |M(X, X ∪ Y ) ∩ M(Y, X ∪ Y )|
|M(X, X ∪ Y )| . (12)

The structure of Eq. 12 clearly indicates a correspondence between the degree of entailment
of X for Y and conditional probability. We also need to define the negation of a knowledge
base before obtaining a measure analogous to C2.

Definition 7 Let K be a knowledge base and M(K , K ) the set of models of K delineated
by the set of atoms in K . For each interpretation i ∈ I (K ), let αi = ∧

j li j where li j are the
literals in interpretation i . We define the negation of K , denoted ¬K , to be

¬K =
∨

i∈I (K )\M(K ,K )

αi . (13)

Note that the models of ¬K are the set-theoretical complement of the models of K , i.e.
M(¬K , K ) = I (K ) \ M(K , K ).

Applying Definitions 6 and 7 to the probabilistic measure C2 results in CK B2, a mea-
sure of coherence for two knowledge bases K1 and K2 each of which is consistent and
non-tautologous (i.e. Ki � ⊥ and Ki � �),

CK B2(K1, K2) = 1

2

[
E(K2|K1) − E(K2|¬K1)

E(K2|K1) + E(K2|¬K1)
+ E(K1|K2) − E(K1|¬K2)

E(K1|K2) + E(K1|¬K2)

]
. (14)
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Example 4 CK B2({p}, {p, q}) = 3/4, CK B2({p}, {p ∨q}) = 2/3, CK B2({p}, {q}) = 0 and
CK B2({¬p}, {p, q}) = −1.

Like the CK B1 measure the CK B2 measure satisfies conditions 1, 2 and 3, although its
range is the interval [−1, 1] rather than [0, 1]. Furthermore, various properties of these mea-
sures correspond with properties of the respective probabilistic measures of coherence. In
particular, we note that just as zero provided a neutral point between positive and negative
probabilistic dependence in the C2 measure so zero provides a neutral point for the CK B2

measure. To make this point in a more precise way we define a notion of logical (in)depen-
dence for knowledge bases.

Definition 8 For two knowledge bases K1 and K2, each of which is consistent and non-tau-
tologous, we say that

(i) K1 and K2 are positively dependent iff E(K2|K1) > E(K2|¬K1),
(ii) K1 and K2 are independent iff E(K2|K1) = E(K2|¬K1),

(iii) K1 and K2 are negatively dependent iff E(K2|K1) < E(K2|¬K1).

The following proposition shows how logical (in)dependence affects coherence as given
by the CK B2 measure.

Proposition 10 For two knowledge bases K1 and K2, each of which is consistent and non-
tautologous,

(i) CK B2(K1, K2) > 0 iff K1 and K2 are positively dependent,
(ii) CK B2(K1, K2) = 0 iff K1 and K2 are independent,
(iii) CK B2(K1, K2) < 0 iff K1 and K2 are negatively dependent.

Proof First of all, we show that

E(K2|K1) > E(K2|¬K1) iff E(K1|K2) > E(K1|¬K2). (15)

We just prove sufficiency since necessity can be proved in the same way. Let us define E(K2)

as the ratio of the number of models of K2 to the number of interpretations arising from the
atoms in K1 and K2,

E(K2) = |M(K2, K1 ∪ K2)|
|I (K1 ∪ K2)| . (16)

We note that E(K2) can be thought of as the marginal probability of K2. It follows that

E(K2) = E(K2|K1)E(K1) + E(K2|¬K1)E(¬K1). (17)

Thus since E(K1) + E(¬K1) = 1 and by assumption E(K2|K1) > E(K2|¬K1), it follows
that

E(K2|K1) > E(K2). (18)

Furthermore, by the definitions given it follows that

E(K1|K2) = E(K2|K1)

E(K2)
E(K1), (19)

analogous to Bayes’ theorem. Given Eq. 18 it follows that E(K1|K2) > E(K1). Considering
the expression for E(K1) analogous to Eq. 17 it then follows that E(K1|K2) > E(K1|¬K2).
From expression (15) Proposition (i) follows trivially. Propositions (ii) and (iii) can be estab-
lished in a similar way. ��
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Thus, the neutral point in the CK B2 measure corresponds to logical independence of the
knowledge bases and so we find that the coherence of two knowledge bases containing no
atoms in common is zero,3 e.g. CK B2({p}, {q, r}) = 0. Other properties of the CK B1 and
CK B2 measures correspond to the properties of the two types of probabilistic coherence mea-
sures discussed in Sect. 2. However, we will not pursue these further since our main interest
in this section is to consider cases where inconsistency is present.

4.2 Inconsistent knowledge bases

We now turn to the more demanding task of proposing coherence measures that will dis-
tinguish between cases where the two knowledge bases are inconsistent with each other,
although we will still assume that they are individually consistent. The CK B1 and CK B2

measures defined in Sect. 4.2 will be inappropriate since they satisfy condition 3 and so yield
minimal values of coherence (0 for CK B1 and −1 for CK B2) in all cases where the knowledge
bases are inconsistent. The goal in this section is to find a measure that will treat inconsistency
in a non-trivial way, discriminating between different cases of inconsistency. We note, first of
all, that such a measure can be obtained by a slight modification of the CK B2 measure. As can
be seen from Eq. 14 the denominators ensure that the result is −1 in the case of inconsistency.
By removing the denominators we obtain,

CK B3(K1, K2) = 1

2
[E(K2|K1) − E(K2|¬K1) + E(K1|K2) − E(K1|¬K2)] . (20)

We note that CK B3 satisfies conditions 1 and 2 proposed for a coherence measure in Sect. 4.1
and still results in values of coherence in the range [-1,1].

Example 5 CK B3({p}, {p, q}) = 7/12, CK B3({p}, {p ∨ q}) = 7/12, CK B3({p}, {q}) = 0
and CK B2({¬p}, {p, q}) = −7/12, CK B3({p, q}, {¬p,¬q}) = −1/3 and CK B3({p →
q, r}, {q → ¬r, p ∨ (¬p ∧ ¬r)}) = −1.

As with the CK B2 measure, we find that CK B3 has a neutral point at zero corresponding
to logical independence of the knowledge bases as defined in Definition 8. Furthermore, it is
clear that CK B3 satisfies Proposition 10. While inconsistent knowledge bases will have a neg-
ative value of coherence according to CK B3 (since E(K2|K1) = E(K1|K2) = 0), it is worth
noting that consistent knowledge bases can also have a negative coherence provided there is
sufficiently little overlap between their sets of models. For example, CK B3({p}, {¬p∨¬q}) =
−7/12 even though they have a model in common, {p,¬q}.

According to CK B3 the minimum value of coherence (−1) is obtained for knowledge
bases containing complementary models, i.e. where one knowledge base is logically equiv-
alent to the negation of the other as defined in Definition 7. Thus, condition 3 (see Sect. 4.1)
has effectively been replaced by

3′. C(K1, K2) is minimal if K1 is the negation of K2.

This, however, gives rise to a problem. Consider two conflicting predictions about tomor-
row’s weather: in scenario one, the first prediction is that it will be hot and dry and the second
prediction is that it will be cold or wet; in scenario two, the first prediction is that it will be
hot and dry and the second prediction is that it will be cold and wet. Intuitively it seems that
scenario two is less coherent than scenario one since there is no possibility of even partial
agreement between the predictions. This is not reflected in the CK B3 measure, however, since
CK B3({p, q}, {¬p,¬q}) = −1/3 while CK B3({p, q}, {¬p ∨¬q}) = −1. The reason CK B3

3 The proof of this is exactly the same as that provided for the CK B3 measure in Sect. 4.2.

123



Coherence measures and their relation to fuzzy similarity and inconsistency 241

cannot account for this is that it does not take into account partial agreement between models
of the two knowledge bases. Thus, there needs to be some contribution to the coherence
measure from models that are not identical.

In light of the above discussion, we now define the notion of categorical inconsistency
before providing an alternative to condition 3′.

Definition 9 Consider two classical knowledge bases K1 and K2, each of which is individ-
ually consistent. K1 and K2 are defined to be categorically inconsistent if and only if K1 and
K2 are categorical upon their common language and their models contain complementary
literals, i.e. K1 and K2 each have just one model in their common language and for each
atom p in the language, either p is in the model of K1 and it is not in the model of K2 or
vice versa.

Example 6 The knowledge bases K1 = {p, q,¬r} and K2 = {¬p,¬q, r} are categorically
inconsistent.

The following alternative to condition 3′ can now be defined,

3′′. C(K1, K2) is minimal if K1 and K2 are categorically inconsistent.

In order to construct a measure satisfying conditions 1, 2 and 3′′ and that includes a
contribution from non-identical models, we first define the agreement between two classical
interpretations, X and Y .

Definition 10 The agreement between two interpretations, X and Y is defined as

C(X, Y ) = |X ∩ Y |
n

, (21)

where n is the number of atoms in the language and we recall that interpretations are repre-
sented by the set of literals that are true in them.

Using Definition 10 and representing M(Ki , K1 ∪ K2) by M(Ki ), we can now define a
coherence measure CK B4 between two knowledge bases K1 and K2 satisfying conditions 1,
2 and 3′′ as follows,

CK B4(K1, K2) = |M(K1) ∩ M(K2)| + δ

|M(K1) ∪ M(K2)| , (22)

where

δ =
∑

X∈M1

∑
Y∈M(K2) C(X, Y )

|M(K2)| +
∑

X∈M(K1)

∑
Y∈M2

C(X, Y )

|M(K1)| (23)

with M1 = M(K1) \ M(K2) and M2 = M(K2) \ M(K1). This means that for each model
of K1 which is not a model of K2, we take its average agreement with the models of K2

(and similarly for models of K2 that are not models of K1).

Example 7 CK B4({p}, {p, q}) = 3/4, CK B4({p}, {p ∨ q}) = 3/4, CK B4({p}, {q}) = 1/2,

CK B4({¬p}, {p, q}) = 1/4, CK B4({p, q}, {¬p,¬q}) = 0 and CK B4({p → q, r},
{q → ¬r, p ∨ (¬p ∧ ¬r)}) = 102/120.

CK B4 defines a measure on the interval [0, 1], which satisfies conditions 1, 2 and 3′′. This
measure is very closely associated with the CK B1 measure as can be seen by comparing Eq.
22 with Eq. 11. It is clear that in all cases CK B4 ≥ CK B1 since it adds in the extra compo-
nent δ and we note that δ = 0 if K1 and K2 are logically equivalent. However, while CK B1

is a simple measure corresponding directly to the probabilistic measure C1, CK B4 is more
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complex. The motivation for the extra term δ arises from the idea that while CK B1 provides
a good starting point for a coherence measure it fails to take into account partial agreement
between models of the respective knowledge bases. This is crucial in cases of inconsistency
since more partial agreement will result in a higher degree of coherence. Consider again
predictions concerning tomorrow’s weather and, in particular, the claim that it will be hot
and dry. Clearly the prediction that it will be hot and wet is in greater agreement with this
claim than is the prediction that it will be cold and wet, yet neither of these predictions has
any models in common with the original prediction and so CK B1 yields a result of zero in
both cases. By contrast, CK B4 finds the prediction that it will be hot and wet to be more
coherent with the original claim (a value of 1/2 compared to zero for the prediction that it
will be cold and wet).

It is also worth noting that the δ term results in more intuitive orderings of coherence values
even when the two knowledge bases are consistent with each other. Consider again the claim
that tomorrow’s weather will be hot and dry (represented by K1 = {p∧q}). Now consider the
prediction that it will be hot (K2 = {(p}) and an alternative prediction that it will be hot and
dry or that it will be cold and wet (K3{(p∧q)∨(¬p∧¬q}). Note that K2 is equivalent to the
prediction that it will be hot and dry or that it will be hot and wet ((p∧q)∨(p∧¬q). Intuitively,
it seems that the coherence between K2 and K1 should be greater than that between K3 and
K1 since even the prediction of K2 that conflicts with K1 is in partial agreement with it. Yet
CK B1 ignores this partial agreement and gives CK B1(K2, K1) = CK B1(K3, K1) = 1/2. By
contrast, CK B4 captures this insight, giving CK B4(K2, K1) = 3/4 > 1/2 = CK B4(K3, K1).

The fact that CK B4 satisfies condition 3′′ means that it overcomes the problem that was
noted for the CK B3 measure. This can be seen by noting that CK B4({p, q}, {¬p,¬q}) = 0
while CK B4({p, q}, {¬p ∨ ¬q}) = 1/3.

The CK B4 and CK B3 measures have certain properties analogous to those of the proba-
bilistic measures C1 and C2 respectively, as exemplified by the neutral point corresponding
to probabilistic independence in the case of C2 and to logical independence in the case of
CK B3. Furthermore, analogous to Proposition 3 (and to Proposition 7 dealing with similarity
measures) we have the following proposition,

Proposition 11 The CK B4 coherence measure defined in Eq. 22 is insensitive to the depen-
dence relationship between knowledge bases as defined in Definition 8 in the sense that
∀ε ∈ (0, 1)

(a) there are knowledge bases K1 and K2 which have a negative dependence and CK B4

(K1, K2) > 1 − ε,
(b) there are knowledge bases K1 and K2 which have a positive dependence and CK B4

(K1, K2) < ε.

Proof

(a) Select an integer m such that n = 2m > 2/ε. Now consider a language with propositional
symbols p1, . . . , pm and let K1={p1∨ p2∨· · ·∨ pm} and K2={¬p1∨¬p2∨· · ·∨¬pm}.
We note that E(K2|K1) = (n−2)/(n−1) < 1 = E(K2|¬K1) and so K1 and K2 are neg-
atively dependent according to Definition 8. We find that CK B4(K1, K2) > (n − 2)/n.
(In fact, (n − 2)/n is the value of CK B4(K1, K2) if the δ term is excluded.) It follows
that CK B4(K1, K2) > 1 − ε.

(b) Select an integer n such that n > 2/ε. Now consider a language with propositional
symbols p1, . . . , pn and let K1 = {p1 ∧ p2 ∧ · · · ∧ pn} and K2 = {(p1 ∧ p2 ∧ · · · ∧
pn) ∨ α} where α is the propositional formula

∨
i=1,n−1(¬p1∧ · · · ∧¬pi−1 ∧ pi ∧
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¬pi+1∧ · · · ∧¬pn). We note that E(K2|K1) = 1 > (n − 1)/(2n − 1) = E(K2|¬K1)

and so K1 and K2 are positively dependent according to Definition 8. We find that
CK B4(K1, K2) = 2/n − 1/n2 < 2/n < ε. ��

The following example illustrates part (a) of Proposition 11.

Example 8 Suppose p is the proposition that ‘John will pass the test’ and q and r are the
corresponding propositions for Mary and Tom respectively. Consider the claim K1 that at
least one of them will pass the test (p ∨ q ∨ r ) and the claim K2 that at least one of them
will fail the test (¬p ∨ ¬q ∨ ¬r ). In this case the coherence according to CK B4 is high
(6/7) even though E(K2|K1) = 6/7 < 1 = E(K2|¬K1) and so K1 and K2 are negatively
dependent. The fact that most outcomes are compatible with K1 and K2 results in a high
degree of coherence since the first term in CK B4 is just the relative overlap of the models of
K1 and K2.

It is obvious from the definition of the CK B3 measure in Eq. 20 that it does not satisfy a
corresponding version (taking into account its different range) of Proposition 11 since it is
constructed to ensure that negative (positive) dependence results in a value of CK B3 that is
negative (positive).

Intuitively it might be thought that two knowledge bases having no atoms in common
should be neither coherent nor incoherent, i.e. should have a neutral value of 0 for the CK B3

measure and 1/2 for the CK B4 measure, since they are providing information about different
things. This is the case for the CK B3 measure as the following proposition shows.

Proposition 12 Suppose that two knowledge bases K1 and K2 have no atoms in common
so that Atoms(K1) ∩ Atoms(K2) = ∅. Then, CK B3(K1, K2) = 0.

Proof From Proposition 10 it is sufficient to show that K1 and K2 are independent as defined
in Definition 8. Given Eq. 17 this is equivalent to showing that E(K2|K1) = E(K2).

The number of models of K1 in the language consisting of the atoms in K1 ∪ K2 will
be the number of models of K1 in its own language times the number of interpretations in
the language of K2 (i.e. the language consisting of the atoms in K2). This can be written
as |M(K1, K1 ∪ K2)| = |I (K2)| × |M(K1, K1)|. The number of models of K1 in the joint
language that are also models of K2 is |M(K1, K1)| × |M(K2, K2)|. Thus,

E(K2|K1) = |M(K1, K1)| × |M(K2, K2)|
|I (K2)| × |M(K1, K1)| = |M(K2, K2)|

|I (K2)| = E(K2). (24)

This completes the proof. ��
Only a more limited version of Proposition 12 holds for the CK B4 measure.

Proposition 13 Suppose that K1 is the knowledge base {p1, . . . , pm} and K2 = {pm+1, . . . ,

pm+n}. Then, CK B4(K1, K2) = 1/2.

Proof First of all, we note that the relevant models of K1 and K2 will be a subset of the
interpretations in I (K1 ∪ K2), the set of interpretations arising from the atoms in K1 and
K2. Clearly, there will be only one model of K1 that is also a model of K2, i.e. {p1, . . . , pm+n}.
Furthermore, there will be 2n models of K1, i.e. one for each model of K2 in I (K2), and
2m models of K2. Thus, from Eq. 22 the coherence can be written as CK B4(K1, K2) =
(1 + δ)/(2m + 2n − 1). Hence, it suffices to show that δ = (2m + 2n − 3)/2.

Consider first of all the contribution to δ from models of K1 that are not models of K2. For
each such model, its contribution will be an average over all 2m models of K2 as expressed
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in Eq. 23. Let us consider a model of K1 that differs in j literals corresponding to the atoms
in K2 from the models of K2. By considering the sum as contributions from models of K2

differing from the model in question by k literals corresponding to the atoms in K1 we can
write the summation in terms of a sum of binomial coefficients times the ratio of the atoms
in agreement to the total number of atoms, i.e.,

1

2m

m∑
k=0

(
m

k

)
m − k + n − j

m + n
. (25)

We then need to include a further summation over j for all the models of K1 which need
to be included and again we find that a binomial coefficient is required. After adding a similar
term for models of K2 that are not models of K1, we obtain the following expression for δ

δ = 1

2m

n∑
j=1

m∑
k=0

(
n

j

)(
m

k

)
m − k + n − j

m + n
+ 1

2n

m∑
j=1

n∑
k=0

(
m

j

)(
n

k

)
n − k + m − j

m + n
. (26)

By noting that
∑m

k=0

(m
k

)
(m − k) = m2m−1 we are able to rewrite the expression for δ as

δ = 1

2m(m + n)

[
2m−1m(2n − 1) + 2mn(2n−1 − 1)

]

+ 1

2n(m + n)

[
2n−1n(2m − 1) + 2nm(2m−1 − 1)

]

= 2n + 2m − 3

2
. (27)

This completes the proof. ��
It is worth noting that the CK B4 measure does not satisfy a stronger claim corresponding to
Proposition 12, i.e. that its value equal 1/2 in cases where the two knowledge bases have no
atoms in common, as the following example shows.

Example 9 Let K1 = {p ↔ q} and K2 = {r}. CK B4(K1, K2) = 11/18.

The way in which CK B4 differs from CK B3 in this respect is similar to the way in which
the probabilistic coherence measures C1 and C2 differ since the proof of Proposition 12
shows that knowledge bases with no atoms in common are logically independent. In the
probabilistic case, C2 gives a value of zero in the case of probabilistic independence, just as
CK B3 does in the case of logical independence. By contrast, consider the C1 measure for a
case of probabilistic independence in which the two beliefs have high marginal probabilities.
In this case, C1 can have a high value (close to 1) since it is the overlap that is important,
not probabilistic (in)dependence. Similarly, for the CK B4 measure it is overlap/agreement
between the models of the two knowledge bases that is important, not logical (in)dependence.
Hence, if both knowledge bases have a large number of models (which corresponds to high
marginal probability in the probabilistic case) the CK B4 measure can have a high value (close
to 1).

In comparing the two coherence measures presented in this section (CK B3 and CK B4),
we note that each of them has some advantages. Despite the fact that the CK B3 measure is
straightforward, being based on the degree of entailment, and presents a clear parallel to the
probabilistic measure C2, the fact that it does not have a minimal value of coherence for
the knowledge bases K1 = {p, q} and K2 = {¬p,¬q} presents a serious problem. Hence,
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overall CK B4 seems preferable as a measure of coherence and so only it will be considered
in the following discussion.

Finally in this section, we consider the issue of how pairs of knowledge bases can be
ordered in terms of the coherence measures that have been defined. To do this we propose a
definition of closeness of two knowledge bases.

Definition 11 Let K , K1 and K2 be three knowledge bases. K1 is defined as being closer
than K2 to K , denoted K2 �K K1, iff

CK B4(K2, K ) ≤ CK B4(K1, K ). (28)

Example 10 Let K = {¬p}, K1 = {p, q} and K2 = {p ∨ q}.K2 is closer to K since
CK B4(K1, K ) = 1/4 < 11/24 = CK B4(K2, K ).

4.3 Discussion of related work

The coherence measures proposed above to deal with two knowledge bases which may be
inconsistent with each other draw attention to the fact that it is not just the degree of conflict
between them that is important when comparing them: the extent of agreement can be an
important factor as well. This is illustrated by a problem Qi et al. (2005) raise concerning a
measure of the degree of conflict between two knowledge bases proposed by Hunter (2004).
They point out that the measure yields the degree of conflict between {p, q, r} and {¬p, q, r}
to be the same as that between {p, q, r} and {¬p} (a value of 1/3), whereas one would expect
the agreement on literals q and r in the first case would result in a lower degree of conflict.4

One response to this criticism would be to say that although there is clearly a difference in
the amount of agreement in the two cases, there is no difference in the degree of conflict.
Nevertheless, whether this response is accepted or not, it does seem appropriate to provide
a measure that takes the agreement into account and so incorporates the point raised by Qi
et al. This is achieved by the CK B4 measure, which deals with this example in an appropriate
way since CK B4({p, q, r}, {¬p, q, r}) = 2/3 > 1/3 = CK B4({p, q, r}, {¬p}) and so the
first pair of knowledge bases are more coherent than the second pair according to CK B4.

As already noted, the work of Qi et al is closely related to the current work. Although
their work deals with prioritised knowledge bases, we only consider here the limiting case
where the weights are one and so the knowledge bases are classical. As in the current work,
they consider the case of two individually consistent knowledge bases and propose a degree
of conflict between them which takes into account agreement between the knowledge bases
and so overcomes the problems noted in the example above. Consider two knowledge bases
K1 and K2 and let C and D be prime implicants5 of K1 and K2 respectively. They define a
degree of conflict between C and D, which in the classical case can be written as,

dCon(C, D) = AtomC (C, D)

AtomC (C, D) + AtomS A(C, D) + λ × AtomW A(C, D)
, (29)

4 Hunter (2002) defines the coherence of a quasi-classical model and extends this to the coherence of a
knowledge base by taking the maximum coherence of all its minimal quasi-classical models. However, this
definition of coherence is intended as a measure of inconsistency and, being applied to a single knowledge
base, is not intended to take into account the agreement between two knowledge bases. To apply this approach
to the current problem, it would be necessary to take the union of the two knowledge bases which in both
cases would result in {p, q, r, ¬p}. Hence, in both cases the coherence would be the same.
5 Following the definition by Qi et al. (2005) we say that a conjunction of literals D is an implicant of formula
φ iff D � φ and D does not contain two complementary literals. A prime implicant of a knowledge base K
is an implicant D of K such that for every other implicant D′ of K , D′ �⊂ D.
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where AtomC (C, D) is the cardinality of the set of atoms in conflict6 in C∪D, AtomS A(C, D)

is the cardinality of the set of atoms which are included in both C and D (they are said to
be in strong agreement), AtomW A(C, D) is the cardinality of the set of atoms which are
included in C or D but not both (they are said to be in weak agreement) and λ can take any
value in the interval (0, 1]. Here we will take λ = 1/2. The degree of conflict between K1

and K2, denoted DCon(K1, K2) is then taken to be the minimum degree of conflict between
pairs of prime implicants taken from K1 and K2 respectively. For the example discussed
earlier, this yields DCon({p, q, r}, {¬p, q, r}) = 1/3 < 1/2 = DCon({p, q, r}, {¬p}), and
so overcomes the problem.

A problem arises for the approach of Qi et al. when the degree of conflict is used to
define the closeness of two knowledge bases. Briefly, knowledge bases K1 and K are closer
than K2 and K if and only if the degree of conflict is greater between K2 and K than it is
between K1 and K . Consider the knowledge bases K = {¬p, q}, K1 = {p, q}, K2 = {p}
and K3 = {p, r}. Since DCon(K1, K ) = 1/2 < 2/3 = DCon(K2, K ) and so K1 and K are
closer than K2 and K . However, DCon(K1, K ) = 1/2 = DCon(K3, K ) and so K3 is as close
to K as K1 is to K . Yet, this seems unintuitive since there is clearly more agreement between
K1 and K than there is between K3 and K . In considering K3 and K , the atoms q and r are
said to be in weak agreement and, for the purposes of calculating the degree of conflict, this
is equivalent to having one atom in strong agreement as is the case between K1 and K . It
is not clear, however, why weak agreement should be able to compensate for lack of strong
agreement in this way. In fact, if there is sufficient weak agreement it can more than com-
pensate for strong agreement. Considering K4 = {p, r, s}, we find that DCon(K4, K ) = 2/5
and so K4 is closer to K than K1 is to K , which again seems incorrect since intuitively K1

has more agreement with K .
The same problems occur even if the value of λ is changed. If λ > 1/2 the problem

becomes worse since weak agreement is able to compensate for strong agreement more
easily. If λ < 1/2 the problem is lessened to some extent since weak agreement cannot
compensate for strong agreement as easily as it can in the case where λ = 1/2. However,
sufficient weak agreement will still be able to compensate for strong agreement, it is just that
what counts as sufficient will change.

A more satisfactory ordering can be achieved by using the CK B4 coherence measure and
the definition of closeness provided in Definition 11. Considering again knowledge bases
K , K1, K2, K3 and K4, we find that CK B4(K1, K ) = 1/2, CK B4(K2, K ) = 1/4, CK B4

(K3, K ) = 1/3 and CK B4(K4, K ) = 3/8. Thus, in terms of their closeness to K we find that
K1 is closer than K4, which in turn is closer than K3, which in turn is closer than K2. Intui-
tively, this seems more reasonable. Adding more atoms to one knowledge base which are not
in the other might result in a slight increase in coherence since the conflicting information
is relatively less important to all the information in the knowledge bases, but this cannot
compensate for lack of strongly agreeing information (i.e. atoms that are in both knowledge
bases). This can be expressed more formally by noting that CK B4({¬p, q},
{p, p1, . . . , pm} = 1/2×(m +1)/(m +2) which is less than 1/2(= CK B4({¬p, q}, {p, q}))
for all finite m.

Since Qi et al. also define degrees of strong agreement and weak agreement, they could
point out in response to the foregoing discussion that K1 and K have a greater (lesser) degree
of strong (weak) agreement than K3 and K . While this is correct, the problem is that only the
degree of conflict is taken into account in their definition of closeness. Suppose, however,
that instead of defining closeness in terms of their degree of conflict it is defined in terms

6 An atom p is in the set of atoms in conflict in C ∪ D iff p is in C and ¬p is in D or vice versa.
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of their degree of strong agreement. In the classical case the degree of strong agreement
between two prime implicants C and D of knowledge bases K1 and K2 respectively can be
written as

dS A(C, D) = AtomS A(C, D)

AtomC (C, D) + AtomS A(C, D) + λ × AtomW A(C, D)
, (30)

with the degree of strong agreement between K1 and K2, denoted DS A(K1, K2), taken
to be the maximum degree of strong agreement between pairs of prime implicants taken
from K1 and K2 respectively. Closeness of two knowledge bases could then be ordered
by saying that K1 and K are closer than K2 and K if and only if the degree of strong
agreement is greater between K1 and K than it is between K2 and K . This would resolve
the problem for the knowledge bases considered above, since DS A(K1, K ) = 1/2 while
DS A(K2, K ) = DS A(K3, K ) = DS A(K4, K ) = 0. However, it would also give rise to other
problems. Just as weak agreement was found to compensate for lack of strong agreement
in the ordering based on the degree of conflict, so weak agreement can now compensate
for lack of conflicting information to reduce the degree of strong agreement (and hence
closeness). For example, consider again K = {¬p, q}, K1 = {p, q} and now also consider
K5 = {q, r, s}. Here we find that DS A(K1, K ) = 1/2 > 2/5 = DS A(K5, K ) and so K1 is
closer than K5 to K , which seems unintuitive since there is more disagreement between K1

and K than there is between K5 and K .
Once again, a more satisfactory ordering can be achieved by using the CK B4 coherence

measure since CK B4(K1, K ) = 1/2 < 5/8 = CK B4(K5, K ) and so K5 is closer than K1 to
K . Complementary to the earlier case, adding more atoms to one knowledge base which are
not in the other might result in a slight decrease in coherence since the agreeing information
is relatively less important to all the information in the knowledge bases, but this cannot
compensate for lack of conflicting information in reducing coherence. This can be expressed
more formally by noting that CK B4({¬p, q}, {q, p1, . . . , pm} = 1/2 × (m + 3)/(m + 2)

which is greater than 1/2(= CK B4({¬p, q}, {p, q})) for all finite m.
Despite the problems noted above, the work of Qi et al. shows that taking agreement

into account, rather than just conflicting information, can be important. In fact, since order-
ings based on the degree of strong agreement overcome some problems encountered by
the approach based on the degree of conflict, this suggests that they would need to incor-
porate both the degrees of strong agreement and conflict (and perhaps also their degree of
weak agreement) in their definition of closeness. By contrast, the CK B4 coherence measure
provides a single, integrated way of incorporating both agreeing and conflicting information
that overcomes the problems discussed.

5 Conclusions

In this paper we have discussed differences between two probabilistic measures of coherence
and explored parallels between this work, similarity measures for fuzzy sets and the inconsis-
tency between two knowledge bases. In the case of similarity, two very different conceptions
of similarity have been identified, one ignoring the degree of fuzziness of the sets and the
other incorporating it. It has been shown how measures of the first type can be converted
to measures of the second type and that the second type is closely related to the notion of a
coherence measure proposed by Sancho-Royo and Verdegay (2000). Furthermore, a notion
of fuzzy-independence was defined relative to a similarity measure of the first type and it
was shown that when such a similarity measure is used to generate a similarity measure of

123



248 D. H. Glass

the second type, the former measure is insensitive to fuzzy-dependence while the latter is
not. This parallels the situation with the probabilistic measures of coherence.

It has also been argued that in comparing knowledge bases, it is often important to take
agreement between them into account in addition to the total information and conflicting
information. The idea has been to construct a coherence measure which incorporates each of
these components. In the case where two knowledge bases are consistent with each other the
probabilistic coherence measures can be carried across directly to the models of the knowl-
edge bases, but in the case where the knowledge bases are in conflict this is not possible.
Two measures were proposed for the inconsistent case and, once again, parallels with the
probabilistic measures were found. In particular, as in the probabilistic and fuzzy cases, a
notion of logical independence of two knowledge bases was defined, with one measure insen-
sitive to independence while the other is not. However, the measure that resulted in a positive
(negative) value in cases of positive (negative) logical dependence turned out to be problem-
atic since it does not yield as minimally coherent (or maximally incoherent) knowledge bases
which intuitively it should. By contrast, the coherence measure that is insensitive to logical
(in)dependence satisfies appropriate conditions for a measure of coherence, has a number of
suitable properties and has been shown to yield intuitive results in comparison of knowledge
bases which present problems for other approaches.

The application of coherence to inconsistency in knowledge bases suggests a number of
possible directions for future work. These include treating cases where the knowledge bases
may be individually inconsistent and extending the work to calculate coherence in priori-
tised knowledge bases as Qi et al. have done with their work on strong and weak agreement.
Another direction would be to investigate how coherence measures can be applied to deal
with interactions between agents and the ordering of heterogeneous sources of information.
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